CS3214 Pengolahan Citra – UAS

CHAPTER 3.
Operasi-operasi Dasar Pengolahan Citra
Operasi Aljabar: Aritmatika & Boolean
Operasi Geometri

Universitas Telkom

TIK

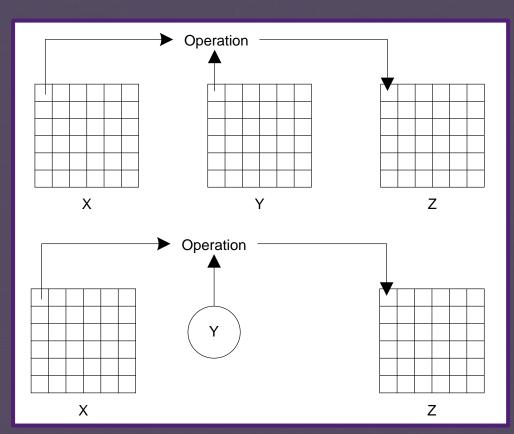
 Mahasiswa memahami dan dapat mengimplementasikan operasi dasar dalam pengolahan citra

Sub Bab

- Operasi Aljabar: Aritmatika dan Boolean
- Operasi Geometri: Zoom, Rotasi, Flip, Cut, W

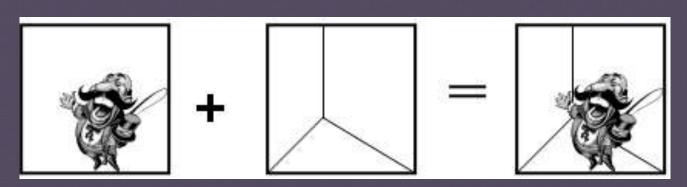
Operasi Pada Citra

- Operasi Aljabar:
 - Aritmatika
 - Boolean
- Operasi Geometri:
 - Zoom (in & out)
 - Rotasi
 - Flipping
 - Cut & paste
 - Warping

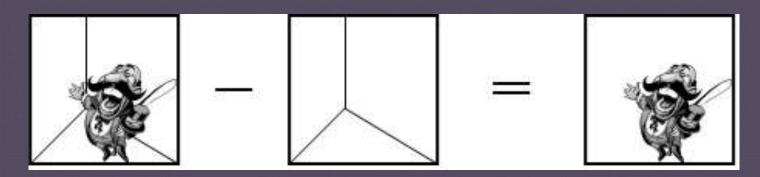

Operasi Aljabar

- \bullet X opr Y = Z
 - X: citra
 - Y: citra atau besaran skalar
 - Z: citra
- Level komputasi:
 - Berbasis titik (pointwise): dilakukan antara tiap elemen X dan Y
 - Berbasis matriks: melibatkan matriks ketetanggaan

Operasi Aritmatika


- Beberapa operasi aritmatika:
 - Penjumlahan
 - Pengurangan
 - Perkalian
 - Pembagian

Untuk citra RGB, operasi dilakukan per plane


Efek Penjumlahan pada Citra

- Y citra:
 - Z adalah jumlah nilai brightness dari tiap pixel pada X dan Y
- Y besaran skalar:
 - Z adalah versi yang lebih terang dari citra X
 - nilai kenaikan brightness sama dengan Y

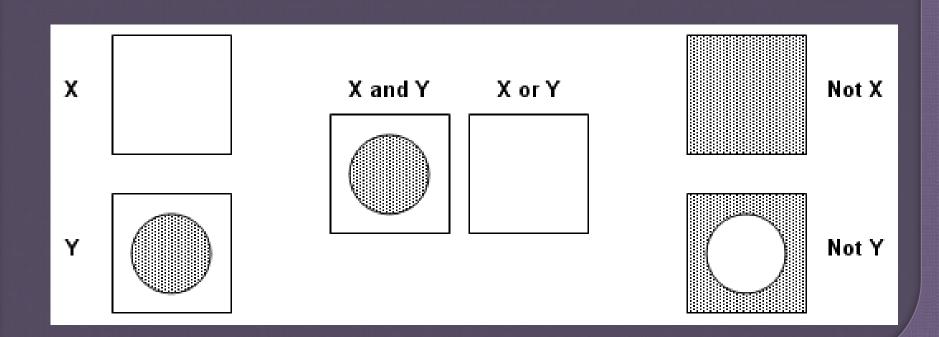
Efek Pengurangan pada Citra

- Y citra:
 - Z adalah perbedaan nilai brightness antar X dan
 Y
- Y besaran skalar:
 - Z adalah versi yang lebih gelap daripada X
 - nilai penurunan brightness sama dengan Y

Efek Perkalian pada Citra

Y citra:

- Z adalah hasil product antara nilai brightness citra X dan Y
- Y besaran skalar:
 - nilai brightness Z proporsional terhadap X pada nilai Y


Efek Pembagian pada Citra

Y citra:

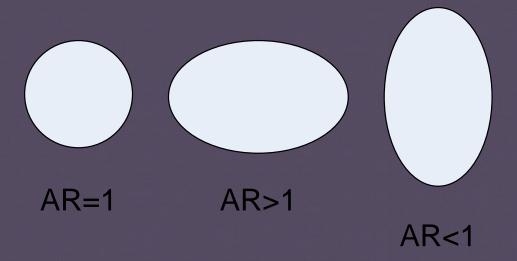
- Z adalah nilai skala brightness pada tiap pixel di X terhadap tiap pixel di Y
- Y besaran skalar:
 - nilai brightness Z akan proportional terbalik terhadap X dengan nilai Y

Operasi Boolean

- Operasi boolean → AND, OR, NOT
- Kombinasinya : NAND, NOR, XOR

Operasi Geometri

- Proses yang memanipulasi posisi spatial dari pixel
- Contoh:
 - Zoom (in & out)
 - Rotasi
 - Flipping
 - Cut & paste
 - Warping


Zoom

- Proses-proses yang melibatkan penaikan atau penurunan ukuran citra
- Teknik yang paling sederhana dalam zooming

 menduplikasikan nilai pixel pada arah X atau Y.
- Jika citra tidak di zoom dengan nilai yang sama, maka "aspect ratio" dari citra akan berubah.

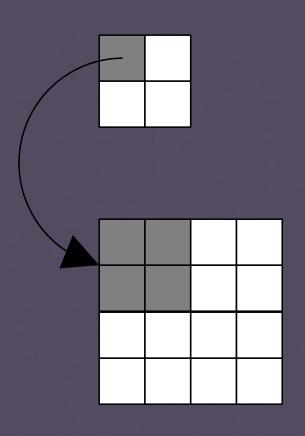
Aspect Ratio

Rasio antara jumlah titik vertikal dan horizontal untuk mendapatkan panjang yang sama di kedua arah tersebut

Zoom in

- Resolusi tidak bertambah
- Perubahan pada besar pixelnya
 - titik kecil dapat terlihat lebih besar

Zoom 3xAR = 1



Zoom 3x AR ≠ 1

Contoh algoritma zoom 2x, AR = 1

```
int i, j, m, n;
m=0;
n=0;
for (i=0;i<=jmlbaris-1;i++)</pre>
  for (j=0; j<=jmlkolom-1; j++)</pre>
    Z[m,n] = X[i,j];
    Z[m,n+1] = X[i,j];
    Z[m+1,n] = X[i,j];
    Z[m+1,n+1] = X[i,j];
    n=n+2;
  m=m+2;
  n=0;
```


Zoom out

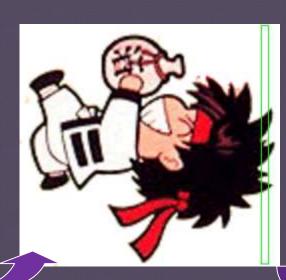
- Ada informasi pada citra yang harus dihilangkan.
- Salah satu metode sederhana > ambil rata-rata dari n pixel bertetangga pada X sebagai nilai dari satu pixel pada Z
 - Contoh: hasil rata-ratanya 4 pixel pada X menjadi 1 pixel pada Z

Zoom in → reversible

Zoom 0.5x

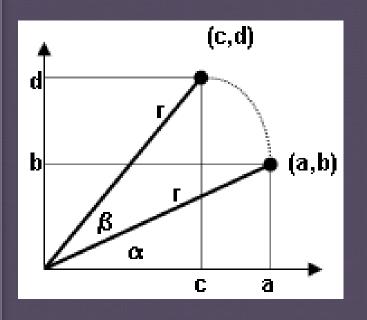
Zoom out \rightarrow not reversible

Zoom 0.25x


Zoom 4x

Rotasi

- Rotasi sederhana: kelipatan 90⁰
 - salin pixel-pixel baris ke pixel-pixel kolom sesuai arah rotasi



Algoritma rotasi 90º

```
int i,j,k;
k=jmlkolom-1;
for (i=0;i<=jmlbaris-1;i++)
{
   for(j=0;j<=jmlkolom-1;j++)
   {
      Z[j,k] = X[i,j];
   }
   k=k-1;
}</pre>
```

Rotasi β^0

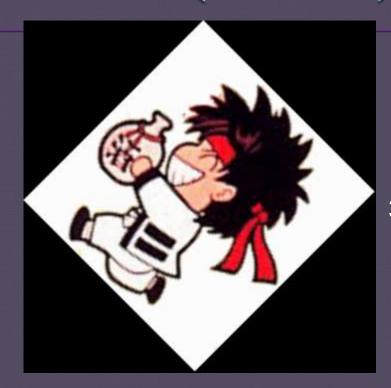

```
Titik (a,b) \rightarrow (c,d), dimana:

a = r.cos \alpha

b = r.sin \alpha


c = r.cos \alpha.cos \beta-r.sin \alpha.sin \beta

= a.cos \beta - b.sin \beta


d = r.sin \alpha.cos \beta+r.cos \alpha.sin \beta

= b.cos \beta + a.sin \beta
```

Rotasi X⁰ (cont'd)

Rotasi 45⁰

352

352

Flipping

horizontal

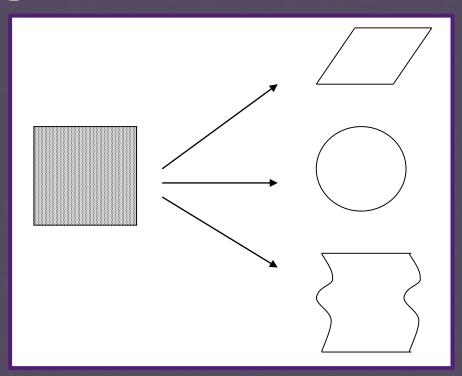
vertikal

Algoritma flipping vertikal

```
int i,j,k;
k=jmlbaris-1;
for (i=0;i<=jmlbaris-1;i++)
{
   for(j=0;j<=jmlkolom-1;j++)
   {
      Z[k,j] = X[i,j];
   }
   k=k-1;
}</pre>
```

Cut & Paste

- Pemilihan (mulai paling mudah):
 - Segiempat
 - · Bentuk geometri lain: lingkaran, elips, poligon
 - Freeform



Warping

Citra diubah dengan cara mengatur kembali hubungan spatial antara objek dengan suatu template spatial -> menimbulkan efek-efek khusus

Contoh warping

Review Materi 3

- Sebutkan 2 jenis operasi pada citra dan perbedaannya lalu berikan contohnya. (Absen 60)
- 2. X opr Y = Z. X ? Opr Y? (Absen 69)
- 3. Sebutkan 4 jenis opr yang mungkin diterapkan pada citra dan jelaskan apa makna komponen X, Y, dan Z untuk masing-masing opr tsb. (Absen 30, 48, 52, 58)
- 4. Perbedaan level komputasi berbasis titik dengan matriks? (Absen 39)
- 5. Jelaskan cara sederhana algoritma proses Zoom Indan Zoom Out terhadap citra (Absen 14, 17)
- 6. Mengapa Zoom Out bersifat not Reversible? (Absen 7)

Riview Materi 1

- 1. Apa yang dimaksud dengan Image Processing? (absen 3)
- Sebutkan dan jelaskan 5 bentuk Image Processing?(absen 8)
- 3. Apa yang dimaksud dengan image Enhancement? (absen 21)
- 4. Apa yang dimaksud dengan Image Segmentation?(absen 37)
- 5. Apa yang dimaksud dengan Image Restoration?(absen 63)
- 6. Beda image restoration dengan image Enhancement?(absen 75)

TERIMA KASIH

Count Down:
7 Weeks
Before UAS

Gud Lak ^_^